If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+6w-560=0
a = 1; b = 6; c = -560;
Δ = b2-4ac
Δ = 62-4·1·(-560)
Δ = 2276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2276}=\sqrt{4*569}=\sqrt{4}*\sqrt{569}=2\sqrt{569}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{569}}{2*1}=\frac{-6-2\sqrt{569}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{569}}{2*1}=\frac{-6+2\sqrt{569}}{2} $
| 3x5+44=12x25+8 | | -7u+41=4(u+2) | | 6(x-3)=2-(3x+7) | | x+4=1x-4 | | 0.12(y-3)+0.02y=0.08y-0.3 | | (x^2-3)^2-3(x^2-3)=4 | | |4n-2|=2|n+3| | | 3x+1/3+2x+1/5=1 | | 150=2W+30+20w | | x÷8+9=20 | | 5m-11=3m-9 | | 16y+21=69 | | 2x+1=347 | | 2-3x-4=-x+2+5 | | 3(x+4)=9(4+x) | | 8k+4=5k+25 | | 3X=-3y+210 | | 6(x+2)=7(x-5) | | 3x-(x^2-x+31)=0 | | 1/x+x/2=19/6 | | 13c+6.45=8c+25.75 | | 0.8+r=11.8 | | 3x-(x^2+x-31)=0 | | -2x+5=8x-4 | | 7f+5=5f+7 | | 3m-8=4m-10 | | 2w^2+6w=228 | | 4r-32=20 | | -4x-10=x-2x+5 | | 2a(=3a+3) | | x4.4=44 | | 0.25x^2+1.5=-10.75 |